Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement.
نویسندگان
چکیده
Voltage-dependent potassium channels (Kv) are homotetramers composed of four voltage sensors and one pore domain. Because of high-level structural flexibility, the first mammalian Kv structure, Kv1.2 at 2.9 A, has about 37% molecular mass of the transmembrane portion not resolved. In this study, by applying a novel normal-mode-based X-ray crystallographic refinement method to the original diffraction data and structural model, we established the structure of full-length Kv1.2 in its native form. This structure offers mechanistic insights into voltage sensing. Particularly, it shows a hydrophobic layer of about 10 A at the midpoint of the membrane bilayer, which is likely the molecular basis for the observed "focused electric field" of Kv1.2 between the internal and external solutions. This work also demonstrated the potential of the refinement method in bringing up large chunks of missing densities, thus beneficial to structural refinement of many difficult systems.
منابع مشابه
Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel
Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous c...
متن کاملMorphological and Crystallographic Characterization of Nanoparticles by Granulometry Image Analysis and Rietveld Refinement Methods
The particle size distribution of the resultant cobalt ferrite samples was determined from Scanning Electron Microscopy (SEM) images using the granulometry image analysis method. Results showed the nanosized particles of the samples. The X-Ray Diffraction (XRD) patterns of samples were also analyzed by Rietveld refinement method. The results indicated that the precipitated sample at 95 <sup...
متن کاملrKv1.2 overexpression in the central medial thalamic area decreases caffeine-induced arousal.
The voltage-gated potassium channel Kv1.2 belongs to the shaker-related family and has recently been implicated in the control of sleep profile on the basis of clinical and experimental evidence in rodents. To further investigate whether increasing Kv1.2 activity would promote sleep occurrence in rats, we developed an adeno-associated viral vector that induces overexpression of rat Kv1.2 protei...
متن کاملThalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia.
BACKGROUND The Drosophila Shaker mutant fruit-fly, with its malfunctioning voltage-gated potassium channel, exhibits anesthetic requirements that are more than twice normal. Shaker mutants with an abnormal Kv1.2 channel also demonstrate significantly reduced sleep. Given the important role the thalamus plays in both sleep and arousal, the authors investigated whether localized central medial th...
متن کاملVoltage sensor of Kv1.2: structural basis of electromechanical coupling.
Voltage-dependent ion channels contain voltage sensors that allow them to switch between nonconductive and conductive states over the narrow range of a few hundredths of a volt. We investigated the mechanism by which these channels sense cell membrane voltage by determining the x-ray crystal structure of a mammalian Shaker family potassium ion (K+) channel. The voltage-dependent K+ channel Kv1....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 25 شماره
صفحات -
تاریخ انتشار 2010